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Abstract— A knowledge of polar sea-ice extent, type, and
location is a valuable tool in understanding many geo-
physical processes. This paper presents an iterative sta-
tistical technique for ice classification of multisensory re-
mote sensing imagery. NSCAT, ERS-2, and SSM/I data
are used to construct enhanced resolution images. Pre-
processing consists of data standardization and principal
component analysis dimensionality reduction. The itera-
tive algorithm is developed based on maximum a poste-
rior (MAP) method with the assumption of a Gaussian
conditional probability density of each ice type. The tech-
nique is applied to data collected during a six day imaging
interval in September of 1996. For this application, the al-
gorithm performs better than nearest neighbor, iterative
maximum likelihood, or K-means approaches.

INTRODUCTION

Polar sea ice plays an important role in the global climate
and several geophysical processes. Sea ice influences heat
transfer between the ocean and atmosphere, regulates the
amount of solar radiation reflected back into space, and
is considered a sensitive indicator of long term climate
change [1]. Consequently, a knowledge of sea ice charac-
teristics is a valuable asset in understanding these impor-
tant geophysical processes. These characteristics can be
grouped into a number of different ice classes or types.
Research in the field of microwave scatterometry and ra-
dic)metry has shown correlations between sea ice param-
eters and observed microwave signatures. By combining
these data sets in a classification algorithm, imagery de-
picting locations of different ice types can be generated.
This paper describes the development and implementation
of a multisensoryiterative approach to sea ice classification
of remote sensing imagery.

BACKGROUND

Data collected by three instruments, the NASA scatterom-
eter (NSCAT), the AMI scatterometer aboard the Euro-
pean remote sensing satellite (ERS-2), and the Special
Sensor Microwave/Imager (SSM/1) are used in the pro-
posed classifier. NSCAT is a Ku-Band (14 GHz) dual-
polarization scatterometer that flew from August of 1996
through June 1997. It measures a“, the normalized radar
cross-section, at multiple incidence and azimuth angles.
The AMI scatterometer aboard ERS-2 is similar to NSCAT

in measurement collecting geometry operating at C-Band
(5.3 GHz) and vertical polarization. SSM/I is a dual-
polarization multi-frequency radiometer which measures
brightness temperature TB of the earth’s surface. The
SSM/I frequencies are approximately 19, 22, 37, and 85
GHz with v- and h-pol at all frequencies except 22 for
which only v-pol measurements are taken. The several
channels of each instrument are considered separate pa-
rameters to be used in the ice classification effort.

Enhanced resolution microwave imagery is created for
each channel of the previously described instruments by
combining data collected from multiple passes of each satel-
lite during an imaging period. Since ERS-2 and NSCAT
h-pol measurements require about 6 days for satisfactory
coverage of the Antarctic ice cover, this period is used for
the image reconstruction of all data parameters. The scat-
terometer image reconstruction (SIR) algorithm is used to
generate the enhanced resolution images [2]. Since both
NSCAT and ERS-2 collect a“ measurements over a range
of incidence angles, a linear model is used to characterize
the observed responses over (3c [20°, 55°]

a“ = A + B(8 – 40°) (1)

where A is u“ at 40 degrees incidence and B is the in-
cidence angle dependence of ~“. A bivariate version of
SIR generates A and B images for NSCAT v- and h-pol
and ERS-2 v-pol. For SSM/I a univariate version of SIR
is used to create TB images for each channel [3]. This
results in 13 possible parameters to be used in the clas-
sification “feature vector.” Since the ERS-2 B images are
relatively noisy, all parameters but this one are used in
the algorithm.

In order to minimize the effects of ocean pixels on the
distribution an ice masking algorithm is applied to all of
the images. The method utilizes the NSCAT polarization
response, incidence angle dependence, and azimuth/temporal
dependence of O“ to segment ocean from sea ice [4].

MULTIVARIATE ANALYSIS

The classification parameter data set consists of three dif-
ferent parameter types: A, B, and T~. Since each has
different units and ranges of values, standardization is re-
quired to ensure that some parameters are not given undue
weight in the classification. In an effort to preserve the ice
class dependent biases that may exist in each parameter
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type, the following standardization technique is applied
for a particular observation x

(x – Pt.pe)x~ =
~type

(2)

where ptyP~and ~tYP~is the mean and standard deviation
of all the data of a particular data type (e.g., all the SSM/I
data) and x$ is the new standardized parameter value.
Hence, all standardized A, B, and TB data have zero mean
and unit variance.

Principal component analysis (P CA) is then used to ex-
amine the variance structure and informational content of
the 12-dimensional standardized data set. PCA achieves
this through a linear transformation which rotates the
data space. For standardized data, PCA uses an eigenvec-
tor/eigenvalue decomposition to construct the necessary
orthonormal basis vectors. The eigenvalue/eigenvector
equation is given by ~r = l?A where K is the 12 x 12
covariance matrix of the standardized data, I’ is a matrix
with eigenvectors of K along the columns (which form a
basis for the original 12-dimensional space), and A is a
dizbgonal matrix with the eigenvalues of K along the di-
agonal (which represent the variances spanned by each
eigenvector). Once these are obtained, a 12 x 1 data vec-
tor ~ containing standardized parameters is transformed
by Z = I’T~. The top eigenvector spans the axis of max-
imum variance in the data. The next eigenvector points
in the direction of highest va,riance in the data orthogonal
to the top eigenvector and so on. Using this technique,
principal component images are created. Each image rep-
resents a mixture of information contained in the original
A, B, and TB images. By observing the coefficients of the
corresponding eigenvectors, the contribution of each orig-
inal parameter to the principal component image can be
assessed.

The PCA transformation orders the eigenvalues and
eigenvectors by increasing variance values. For the imag-
ing interval 1996 JD 261-266, much of the variance or
informational content of the data is contained in the top
few principal components. In this case, over 90% of the
variance is spanned by the top three components while
the lower components contain negligible information. In
fact, the lower PCA images appear quite noisy and hence
are not used in the classification, reducing computational
complexity and memory requirements.

ITERATIVE ALGORITHM DEVELOPMENT

Several statistical methods hold potential for application
in the classification problem. The proposed sea ice classi-
fication algorithm is a maximum a posteriori (MAP) tech-
nique maximizing the posterior distribution over all pos-
sible ice types

argmaxc p(Clz~) = argmaxe
p(z; lc)p(c)

(3)
p(.q

where 5 is the principal component vector Z truncated to
the top three terms and C is a discrete variable denoting
the ice type. Assuming that the conditional distributions
P(Z IC) are Gaussian, and after some mathematical ma-
nipulation, the maximization becomes

argmax. [–~(loglKCl + (Z – jlC)~K:l (~ – ~.)) (4)

+109(P(C))I

where KC and jiC are respectively the covariance matrix
and mean vector of the data in principal component space
for ice type c. While a rough idea of the centroid locations
~C can be obtained from limited training data, KC and the
a priori distribution p(C) are generally unknown. How-
ever, estimates of these can be obtained in an iterative
classification approach. The procedure uses the truncated
principal component data and is defined as follows:

1. With an initial approximation for P(C), perform a
weighted nearest neighbor classification using $. ob-
tained from small training regions.

2. Compute estimates of Kc, ~c, and p(C).

3. Perform a MAP classification using these estimates
and Eq. 4.

4. If converged, quit, otherwise go to step 2.

The algorithm iterates until it converges to a classification
estimate. Simulations demonstrate that as long as the
initial centroids are relatively near the real centroids, the
algorithm converges to a solution that is close to the true
MAP classification.

Termination of the iterative procedure is based on two
convergence metrics. The first is the spectral norm of
each of the covariance matrices KC which is equivalent to
the square root of the largest eigenvalue of K~KC This
provides a measure of the overall covariance structure of
each of the ice type clusters. The second metric is simply
the Euclidean norm of each of the cluster centroid vectors
~.. Convergence of these measures indicates diminishing
cluster deformation and centroid drift.

RESULTS

The algorithm is applied to A, B, and TB imagery for the
time interval 1996 JD 261-266. Training data for initial
estimates of each PC is obtained from regions selected on
the basis of in situ field observations and existing radar
image data. The chosen classes are grounded and drift-
ing icebergs (IB), perennial ice (PER), rough first year
ice (RFY), smooth first year ice (SFY), young ice (YNG),
pancake ice (PNC), and the marginal ice zone (MIZ). Fig-
ure 1 shows plots of the matrix and centroid norms illus-
trating reasonable convergence after about 25 iterations
of the algorithm. The resulting classified image is shown
in Figure 2.
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I: Covariance matrix norms (top) and centroid
norms (top) demonstrating convergence of the algorithm.

High resolution SAR data provides an excellent means
of validation for classification algorithms such as this. How-
ever, due to the inavailability of appreciable amounts of
Antarctic SAR data during any given six day period, it
is difficult to completely assess the accuracy of the re-
sulting ice map. However, the general form of the ice
locations is believable with respect to general ice dynam-
ics (see Drinkwater paper in this conference). MIZ occurs
in the outer margins of the ice pack. By day 266, only
a small amount of perennial ice remains near the tip of
the Antarctic Peninsula since much of the ice surviving
the previous summer’s melt is quickly swept northward
by the Weddell Gyre and melted. Rough first year ice is
found further out in the ice pack than smooth first year
ice. This is consistent with the classification result ob-
tained in [5] in which ERS-2 data trained with in situ
data was used to determine ice type. On the other hand,
there are some obvious classification errors. For instance,
the large tongue extending from the Ross Ice Shelf is la-
beled RFY though this is a region of new ice production.
This effect is likely caused by frost flower formation on
young ice which emulates an RFY signature [6]. Also, a
portion of the Ronne Ice Shelf which has advanced beyond
the limit of the old ice shelf mask is misclassified as pan-
cake ice by the algorithm. In the future, SAR data may
be used to improve the choice of training regions as well

Figure 2: Classified image for 1996 JD 261-266.

as improve the classification. We are nonetheless limited
to periods of sensor overlap.

When the algorithm is applied to a sequence of con-
secutive image sets, temporal stability in ice type clas-
sification is observed. While the lack of validation is a
serious concern, this result indicates that the algorithm is
certainly classifying features in the observed signatures.
With proper training/validation data the algorithm is ex-
pected to produce even more satisfactory results.

This classification result was compared with three other
classifications: nearest neighbor, iterative maximum like-
lihood, and K-means. While space prohibits showing the
resulting classification images, it was found that the it-
erative MAP approach was superior to the others when
using the same training regions. In particular, the other
methods resulted in unreasonable classifications of the ice
cover such as unrealistically large areas of icebergs and
perennial ice.
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